Forum of Mathematics, Sigma (Jan 2020)
MULTIPLICATIVE PARAMETRIZED HOMOTOPY THEORY VIA SYMMETRIC SPECTRA IN RETRACTIVE SPACES
Abstract
In order to treat multiplicative phenomena in twisted (co)homology, we introduce a new point-set-level framework for parametrized homotopy theory. We provide a convolution smash product that descends to the corresponding $\infty$-categorical product and allows for convenient constructions of commutative parametrized ring spectra. As an immediate application, we compare various models for generalized Thom spectra. In a companion paper, this approach is used to compare homotopical and operator algebraic models for twisted $K$-theory.
Keywords