Energies (May 2025)

Guarded Hot Cylinder Apparatus for Characterization of Thermal Insulation Systems and Materials at Liquid Hydrogen Temperatures

  • Adam Swanger,
  • David Creech,
  • Casimir Van Doorne,
  • Andrew Kelly

DOI
https://doi.org/10.3390/en18102547
Journal volume & issue
Vol. 18, no. 10
p. 2547

Abstract

Read online

As interest in liquid hydrogen (LH2) continues to grow within the energy and mobility sectors, so does the demand for testing capabilities at deep cryogenics temperatures. However, cost-, complexity-, and safety-related challenges associated with handling LH2 effectively limit the landscape of possible options. As an alternative, LH2 temperatures can be accessed via a helium-based cryogenic refrigerator, or “cryocooler”. Recently, NASA and its partners CB&I and Shell began the development of a cryocooler-based calorimeter to characterize the thermal performance of insulations and other materials down to 20 K. Deemed the Guarded Hot Cylinder (GHC), the apparatus utilizes a small vacuum chamber in conjunction with a GM cryocooler and trim heater to control the cold boundary temperature. A sealed, cylindrical copper cup bolts to the cryocooler and houses the material specimen, with an internal, cylindrical test heater assembly to maintain the warm boundary. The steady-state heat load, traveling radially through the specimen, is measured via the electrical input power to the test heater and then used to evaluate the material’s absolute thermal performance. Initial checkout and validation of the GHC using a common bulk-fill insulation material showed close agreement with published data from standardized LN2 boiloff calorimetry testing. The instrument is now considered a lab standard, with the goal of incorporating it into the ASTM C1774 standard in the future, and it is in continuous use, examining insulation materials for next-generation LH2 applications.

Keywords