Minerals (Nov 2020)

Structure and Mineralogy of Hydrophilic and Biwettable Sub-2 µm Clay Aggregates in Oil Sands Bitumen Froth

  • Martin Couillard,
  • Daniel D. Tyo,
  • David M. Kingston,
  • Bussaraporn Patarachao,
  • Andre Zborowski,
  • Samson Ng,
  • Patrick H. J. Mercier

DOI
https://doi.org/10.3390/min10111040
Journal volume & issue
Vol. 10, no. 11
p. 1040

Abstract

Read online

A primary concern of commercial mined oil sands operations is the extent to which one can minimize the content of water and solids contaminants in the solvent-diluted bitumen products resulting from the bitumen production processes. During bitumen production, particles of about 2 µm or less may be responsible for the stabilization of water-in-bitumen emulsions that form during aqueous extraction of bitumen and purification of bitumen froth subsequently during the froth treatment processes, thus leading to the presence of those contaminants in solvent-diluted bitumen products. In this study, we separate and analyze sub-2 µm clay solids isolated from typical bitumen froth fed to a froth treatment plant at a commercial mined oil sands operation. Analytical transmission electron microscopy (TEM) with spatially-resolved energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS) demonstrate key differences in morphology and composition between sub-2 µm clay aggregates with two distinct wettability characteristics: hydrophilic vs. biwettable particle surfaces. In particular, clay platelets with <200 nm lateral dimensions and thicknesses of a few atomic layers, which are intermixed within coarser sub-2 µm clay aggregates, are found to confer clear differences in morphological characteristics and wettability behaviors to the sub-2 µm clay aggregates. The <200 nm clay platelets found within sub-2 µm biwettable clays tend to arrange themselves with random orientations, whereas <200 nm clay platelets within sub-2 µm hydrophilic clays typically form well-ordered face-to-face stacks. Moreover, in biwettable sub-2 µm clay aggregates, <200 nm clay platelets often cover the surfaces of ~1–2 µm sized mineral particles, whereas similarly sized mineral particles in hydrophilic sub-2 µm clay aggregates, in contrast, generally have exposed surfaces without clay platelet coverage. These biwettable vs. hydrophilic behaviors are attributed to a difference in the surface characteristics of the <200 nm clay platelets caused by toluene-unextractable organic carbon coatings. Nanometer-scale carbon mapping reveals an inhomogeneous toluene-unextractable organic carbon coating on the surfaces of <200 nm platelets in biwettable clays. In contrast, hydrophilic clays have a significantly lower amount of toluene-unextractable organic carbon, which tends to be concentrated at steps or near metal oxide nanoparticles on clay particle surfaces. Mixing surface-active organic species, such as asphaltene, resin, or carboxylic organic acids of various types with inorganic solids can lead to a dramatically enhanced emulsion stability. Consequently, understanding the origin and characteristics of sub-2 µm clay solids in bitumen froth is important to (i) clarify their potential role in the formation of stable water-in-oil emulsions during bitumen production and (ii) improve froth treatment process performance to further reduce contaminant solids in solvent-diluted bitumen products. We discuss the implications of our results from these two perspectives.

Keywords