Transactions on Combinatorics (Jun 2017)

Full edge-friendly index sets of complete bipartite graphs

  • Wai Chee Shiu

DOI
https://doi.org/10.22108/toc.2017.20739
Journal volume & issue
Vol. 6, no. 2
pp. 7 – 17

Abstract

Read online

‎‎Let $G=(V,E)$ be a simple graph‎. ‎An edge labeling $f:Eto {0,1}$ induces a vertex labeling $f^+:VtoZ_2$ defined by $f^+(v)equiv sumlimits_{uvin E} f(uv)pmod{2}$ for each $v in V$‎, ‎where $Z_2={0,1}$ is the additive group of order 2‎. ‎For $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎A labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$I_f(G)=v_f(1)-v_f(0)$ is called the edge-friendly index of $G$ under an edge-friendly labeling $f$‎. ‎The full edge-friendly index set of a graph $G$ is the set of all possible edge-friendly indices of $G$‎. ‎Full edge-friendly index sets of complete bipartite graphs will be determined‎.

Keywords