Somatic genetic alterations predict hematological progression in GATA2 deficiency
Laetitia Largeaud,
Matthew Collin,
Nils Monselet,
Francois Vergez,
Vincent Fregona,
Lise Larcher,
Pierre Hirsch,
Nicolas Duployez,
Audrey Bidet,
Isabelle Luquet,
Jacinta Bustamante,
Stephanie Dufrechou,
Nais Prade,
Marie Nolla,
Camille Hamelle,
Suzanne Tavitian,
Christophe Habib,
Mateo Meynier,
Christine Bellanne-Chantelot,
Jean Donadieu,
Flore Sicre de Fontbrune,
Claire Fieschi,
Alina Ferster,
Francois Delhommeau,
Eric Delabesse,
Marlene Pasquet
Affiliations
Laetitia Largeaud
Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, France; Universite de Toulouse, Inserm, CNRS, Universite Toulouse III-Paul Sabatier, Centre de Recherches en Cancerologie de Toulouse, Toulouse
Matthew Collin
Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne
Nils Monselet
Department of bioinformatic, Institut Claudius Rigaud, Toulouse
Francois Vergez
Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse
Vincent Fregona
Universite de Toulouse, Inserm, CNRS, Universite Toulouse III-Paul Sabatier, Centre de Recherches en Cancerologie de Toulouse, Toulouse
Lise Larcher
Laboratory of Hematology, Hopital Saint-Louis, APHP
Pierre Hirsch
Sorbonne Universite, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hopital Saint-Antoine, Service d’Hematologie Biologique, 75012, Paris
Nicolas Duployez
Laboratory of Hematology, CHU Lille
Audrey Bidet
Laboratory of Hematology, CHU Bordeaux
Isabelle Luquet
Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse
Jacinta Bustamante
Center for the Study of Primary Immunodeficiencies, Paris Cite University, Necker Hospital for Sick Children, APHP, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
Stephanie Dufrechou
Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse
Nais Prade
Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse
Marie Nolla
Department of Pediatric Hematology and Immunology, CHU Toulouse
Camille Hamelle
Department of Pediatric Hematology and Immunology, CHU Toulouse
Suzanne Tavitian
Adult Hematology Department, CHU Toulouse
Christophe Habib
Bioinformatics Department, CHU Toulouse
Mateo Meynier
Bioinformatics Department, CHU Toulouse
Christine Bellanne-Chantelot
Laboratory of Medical Genetic, Hopital Pitie Salpetriere, APHP
Sorbonne Universite, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, SIRIC CURAMUS, Hopital Saint-Antoine, Service d’Hematologie Biologique, 75012, Paris
Eric Delabesse
Laboratory of Hematology, Institut Universitaire du Cancer de Toulouse, France; Universite de Toulouse, Inserm, CNRS, Universite Toulouse III-Paul Sabatier, Centre de Recherches en Cancerologie de Toulouse, Toulouse
Marlene Pasquet
Universite de Toulouse, Inserm, CNRS, Universite Toulouse III-Paul Sabatier, Centre de Recherches en Cancerologie de Toulouse, Toulouse, France; Department of Pediatric Hematology and Immunology, CHU Toulouse
Germline GATA2 mutations predispose to myeloid malignancies resulting from the progressive acquisition of additional somatic mutations. Here we describe clinical and biological features of 78 GATA2-deficient patients. Hematopoietic stem and progenitor cell phenotypic characterization revealed an exhaustion of myeloid progenitors. Somatic mutations in STAG2, ASXL1 and SETBP1 genes along with cytogenetic abnormalities (monosomy 7, trisomy 8, der(1;7)) occurred frequently in patients with GATA2 germline mutations. Patients were classified into three hematopoietic spectra based on bone marrow cytomorphology. No somatic additional mutations were detected in patients with normal bone marrow (spectrum 0), whereas clonal hematopoiesis mediated by STAG2 mutations was frequent in those with a hypocellular and/or myelodysplastic bone marrow without excess blasts (spectrum 1). Finally, SETBP1, RAS pathway and RUNX1 mutations were predominantly associated with leukemic transformation stage (spectrum 2), highlighting their implications in the transformation process. Specific somatic alterations, potentially providing distinct selective advantages to affected cells, are therefore associated with the clinical/hematological evolution of GATA2 syndrome. Our study not only suggests that somatic genetic profiling will help clinicians in their management of patients, but will also clarify the mechanism of leukemogenesis in the context of germline GATA2 mutations.