Journal of Biomedical Physics and Engineering (Aug 2021)
Evaluation of Dose Distribution in Optimized Stanford Total Skin Electron Therapy (TSET) Technique in Rando Anthropomorphic Phantom using EBT3 Gafchromatic Films
Abstract
Background: The Total Skin Electron Therapy (TSET) targets the whole of skin using 6 to 10 MeV electrons in large field size and large Source to Surface Distance (SSD). Treatment in sleeping position leads to a better distribution of dose and patient comfort. Objective: This study aims to investigate the uniformity of absorbed dose in the sleeping Stanford technique on the Rando phantom using dosimetry.Material and Methods: It is an experimental study which was performed using 6 MeV electron irradiation produced by Varian accelerator in the AP and PA positions with gantry angles of 318/3, 0 and 41/5 degrees, and RAO, LAO, RPO and LPO with 291/4 gantry angle and 45 degrees of collimator angle in the sleeping position. Results: The results show that the dose uniformity achieved in this technique is in the range of (100 ± 25%) and, the dose accuracy was 6%. Conclusion: Total Skin Electron Therapy (TSET) technique in sleeping position is very suitable for elderly and disabled patients, and meets the required dose uniformity. Furthermore, the use of a flattening filter is recommended for the more dose distribution uniformity.
Keywords