eLife (Aug 2018)

Single-particle cryo-EM structure of a voltage-activated potassium channel in lipid nanodiscs

  • Doreen Matthies,
  • Chanhyung Bae,
  • Gilman ES Toombes,
  • Tara Fox,
  • Alberto Bartesaghi,
  • Sriram Subramaniam,
  • Kenton Jon Swartz

DOI
https://doi.org/10.7554/eLife.37558
Journal volume & issue
Vol. 7

Abstract

Read online

Voltage-activated potassium (Kv) channels open to conduct K+ ions in response to membrane depolarization, and subsequently enter non-conducting states through distinct mechanisms of inactivation. X-ray structures of detergent-solubilized Kv channels appear to have captured an open state even though a non-conducting C-type inactivated state would predominate in membranes in the absence of a transmembrane voltage. However, structures for a voltage-activated ion channel in a lipid bilayer environment have not yet been reported. Here we report the structure of the Kv1.2–2.1 paddle chimera channel reconstituted into lipid nanodiscs using single-particle cryo-electron microscopy. At a resolution of ~3 Å for the cytosolic domain and ~4 Å for the transmembrane domain, the structure determined in nanodiscs is similar to the previously determined X-ray structure. Our findings show that large differences in structure between detergent and lipid bilayer environments are unlikely, and enable us to propose possible structural mechanisms for C-type inactivation.

Keywords