AIP Advances (May 2018)

Superconducting properties of NbN film, bridge and meanders

  • Lalit M. Joshi,
  • Apoorva Verma,
  • Anurag Gupta,
  • P. K. Rout,
  • Sudhir Husale,
  • R. C. Budhani

DOI
https://doi.org/10.1063/1.5026219
Journal volume & issue
Vol. 8, no. 5
pp. 055305 – 055305-8

Abstract

Read online

The transport properties of superconducting NbN nanostructures in the form of thin film, bridge of width (w) = 50 μm and three meanders of w = 500, 250 and 100 nm have been investigated by resistance (R) measurements in temperature (T) range = 2 -300 K and magnetic field (B) range = 0 - 7 Tesla. The nanostructuring was carried out using Focused Ion Beam (FIB) milling. Reduction of sample width results in significant changes in the normal and superconducting state properties. For instance, the observed metallic behavior in the thin film sample is lost and the normal state resistance increases drastically from 2.4 Ω to 418 kΩ for the 100 nm meander. In the superconducting state, the value of critical temperature Tc (upper critical field Bc2 at T = 0 K) reduces gradually with width reduction, it changes from 13.15 K (42.8 Tesla) in the case of thin film sample to 5.7 K (12.7 Tesla) for the 100 nm meander sample. The superconducting transitions are found to get broader for the bridge sample and the meanders additionally show low-temperature resistive tails. In case of all the samples with reduced width, the transition onsets are found to be rounded at surprisingly high values of T ∼ 25 K >> Tc. These results are discussed in terms of the possible effects of FIB processing and weak localization in our samples.