Jisuanji kexue (Jun 2022)

Study on Multi-label Image Classification Based on Sample Distribution Loss

  • ZHU Xu-dong, XIONG Yun

DOI
https://doi.org/10.11896/jsjkx.210300267
Journal volume & issue
Vol. 49, no. 6
pp. 210 – 216

Abstract

Read online

Different from the data distribution in general image classification scenarios,in the scenario of multi label image classification,the sample number distribution among different label categories is unbalanced,and a small number of head categories often account for the majority of sample size.However,due to the correlation between multiple labels,and the distribution of diffi-cult samples under multiple labels is also related to the data distribution and category distribution,the re-sampling and other methods for solving the data imbalance in the single label problem cannot be effectively applied in the multi label scenario.This paper proposes a classification method based on the loss of sample distribution in multi label image scene and deep learning.Firs-tly,the unbalanced distribution of multi label data is set with category correlation,and the loss is re-used,and the dynamic lear-ning method is used to prevent the excessive alienation of distribution.Then,the asymmetric sample learning loss is designed,and different learning abilities for positive and negative samples and difficult samples are set.At the same time,the information loss is reduced by softening the sample learning weight.Experiments on related data sets show that the algorithm has achieved good results in solving the sample learning problem in the scene of uneven distribution of multi-label data.

Keywords