EPJ Web of Conferences (Jan 2016)

Molecular Simulations of the Vapor–Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

  • Vinš Václav,
  • Celný David,
  • Planková Barbora,
  • Němec Tomáš,
  • Duška Michal,
  • Hrubý Jan

DOI
https://doi.org/10.1051/epjconf/201611402136
Journal volume & issue
Vol. 114
p. 02136

Abstract

Read online

In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water. The maximum absolute deviation from the IAPWS standard for the surface tension of ordinary water is 10.4 mN · m−1 and 4.1 mN · m−1 over the temperature range from 275 K to 600 K in case of SPC/E and TIP4P/2005, respectively.