Advanced Science (Nov 2024)

Spin Transport Modulation of 2D Fe3O4 Nanosheets Driven by Verwey Phase Transition

  • Zhiyan Jia,
  • Mengfan Zhao,
  • Qian Chen,
  • Rong Sun,
  • Lulu Cao,
  • Kun Ye,
  • Tao Zhu,
  • Lixuan Liu,
  • Yuxin Tian,
  • Yi Wang,
  • Jie Du,
  • Fang Zhang,
  • Weiming Lv,
  • FeiFei Ling,
  • Ya Zhai,
  • Yong Jiang,
  • Zhongchang Wang

DOI
https://doi.org/10.1002/advs.202405945
Journal volume & issue
Vol. 11, no. 41
pp. n/a – n/a

Abstract

Read online

Abstract Realizing spin transport between heavy metal and two‐dimensional (2D) magnetic materials at high Curie temperature (TC) is crucial to advanced spintronic information storage technology. Here, environmentally stable 2D nonlayered Fe3O4 nanosheets are successfully synthesized using a reproducible process and found that they exhibit vortex magnetic domains at room temperature. A Verwey phase transition temperature (TV) of ≈110 K is identified for ≈3 nm thick nanosheet through Raman characterization and spin Hall device measurement of the Pt/Fe3O4 bilayer. The anisotropic magnetoresistance ratio decreases near TV, while both the spin Hall magnetoresistance ratio and spin mixing conductance (Gr) increase at TV. As the temperature approaches 112 K, the anomalous Hall effect ratio tends to become zero. The maximum Gr reaches ≈5 × 1015 Ω−1m−2 due to the clean and flat interface between Pt and 2D nanosheet. The observed spin transport behavior in Pt/Fe3O4 spin Hall devices indicates that 2D Fe3O4 nanosheets possess potential for high‐power micro spintronic storage devices applications.

Keywords