Cell Reports: Methods (Jun 2021)
Deep learning neural network tools for proteomics
Abstract
Summary: Mass-spectrometry-based proteomics enables quantitative analysis of thousands of human proteins. However, experimental and computational challenges restrict progress in the field. This review summarizes the recent flurry of machine-learning strategies using artificial deep neural networks (or “deep learning”) that have started to break barriers and accelerate progress in the field of shotgun proteomics. Deep learning now accurately predicts physicochemical properties of peptides from their sequence, including tandem mass spectra and retention time. Furthermore, deep learning methods exist for nearly every aspect of the modern proteomics workflow, enabling improved feature selection, peptide identification, and protein inference.