IEEE Access (Jan 2019)

Accurate EEG-Based Emotion Recognition on Combined Features Using Deep Convolutional Neural Networks

  • J. X. Chen,
  • P. W. Zhang,
  • Z. J. Mao,
  • Y. F. Huang,
  • D. M. Jiang,
  • Y. N. Zhang

DOI
https://doi.org/10.1109/ACCESS.2019.2908285
Journal volume & issue
Vol. 7
pp. 44317 – 44328

Abstract

Read online

In order to improve the accuracy of emotional recognition by end-to-end automatic learning of emotional features in spatial and temporal dimensions of electroencephalogram (EEG), an EEG emotional feature learning and classification method using deep convolution neural network (CNN) was proposed based on temporal features, frequential features, and their combinations of EEG signals in DEAP dataset. The shallow machine learning models including bagging tree (BT), support vector machine (SVM), linear discriminant analysis (LDA), and Bayesian linear discriminant analysis (BLDA) models and deep CNN models were used to make emotional binary classification experiments on DEAP datasets in valence and arousal dimensions. The experimental results showed that the deep CNN models which require no feature engineering achieved the best recognition performance on temporal and frequency combined features in both valence and arousal dimensions, which is 3.58% higher than the performance of the best traditional BT classifier in valence dimension and 3.29% higher than that of BT classifier in arousal dimension.

Keywords