École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Paul Blunt
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Cyril Botteron
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Jia Tian
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Jérôme Leclère
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Yanguang Wang
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Francesco Basile
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Pierre-André Farine
École Polytechnique Fédérale de Lausanne (EPFL), Electronics and Signal Processing Laboratory (ESPLAB), Rue de la Maladière 71b, CH-2002 Neuchâtel 2, Switzerland
Global Navigation Satellite Systems (GNSSs) were originally introduced to provide positioning and timing services for terrestrial Earth users. However, space users increasingly rely on GNSS for spacecraft navigation and other science applications at several different altitudes from the Earth surface, in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO), and feasibility studies have proved that GNSS signals can even be tracked at Moon altitude. Despite this, space remains a challenging operational environment, particularly on the way from the Earth to the Moon, characterized by weaker signals with wider gain variability, larger dynamic ranges resulting in higher Doppler and Doppler rates and critically low satellite signal availability. Following our previous studies, this paper describes the proof of concept “WeakHEO” receiver; a GPS L1 C/A receiver we developed in our laboratory specifically for lunar missions. The paper also assesses the performance of the receiver in two representative portions of an Earth Moon Transfer Orbit (MTO). The receiver was connected to our GNSS Spirent simulator in order to collect real-time hardware-in-the-loop observations, and then processed by the navigation module. This demonstrates the feasibility, using current technology, of effectively exploiting GNSS signals for navigation in a MTO.