Frontiers in Microbiology (May 2021)

The Good and the Bad: Ecological Interaction Measurements Between the Urinary Microbiota and Uropathogens

  • Laurens E. Zandbergen,
  • Thomas Halverson,
  • Jolanda K. Brons,
  • Alan J. Wolfe,
  • Marjon G. J. de Vos

DOI
https://doi.org/10.3389/fmicb.2021.659450
Journal volume & issue
Vol. 12

Abstract

Read online

The human body harbors numerous populations of microorganisms in various ecological niches. Some of these microbial niches, such as the human gut and the respiratory system, are well studied. One system that has been understudied is the urinary tract, primarily because it has been considered sterile in the absence of infection. Thanks to modern sequencing and enhanced culture techniques, it is now known that a urinary microbiota exists. The implication is that these species live as communities in the urinary tract, forming microbial ecosystems. However, the interactions between species in such an ecosystem remains unknown. Various studies in different parts of the human body have highlighted the ability of the pre-existing microbiota to alter the course of infection by impacting the pathogenicity of bacteria either directly or indirectly. For the urinary tract, the effect of the resident microbiota on uropathogens and the phenotypic microbial interactions is largely unknown. No studies have yet measured the response of uropathogens to the resident urinary bacteria. In this study, we investigate the interactions between uropathogens, isolated from elderly individuals suffering from UTIs, and bacteria isolated from the urinary tract of asymptomatic individuals using growth measurements in conditioned media. We observed that bacteria isolated from individuals with UTI-like symptoms and bacteria isolated from asymptomatic individuals can affect each other’s growth; for example, bacteria isolated from symptomatic individuals affect the growth of bacteria isolated from asymptomatic individuals more negatively than vice versa. Additionally, we show that Gram-positive bacteria alter the growth characteristics differently compared to Gram-negative bacteria. Our results are an early step in elucidating the role of microbial interactions in urinary microbial ecosystems that harbor both uropathogens and pre-existing microbiota.

Keywords