Scientific Reports (Jul 2022)

Photothermal effect of albumin-modified gold nanorods diminished neuroblastoma cancer stem cells dynamic growth by modulating autophagy

  • Zahra Alizadeh Shahabad,
  • Cigir Biray Avci,
  • Farhad Bani,
  • Amir Zarebkohan,
  • Majid Sadeghizadeh,
  • Roya Salehi,
  • Maryam Ghafarkhani,
  • Reza Rahbarghazi,
  • Bakiye Goker Bagca,
  • Neslihan Pınar Ozates

DOI
https://doi.org/10.1038/s41598-022-15660-2
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Here, we investigated the photothermal effect of gold nanorods (GNRs) on human neuroblastoma CD133+ cancer stem cells (CSCs) via autophagic cell death. GNRs were synthesized using Cetyltrimethylammonium bromide (CTAB), covered with bovine serum albumin (BSA). CD133+ CSCs were enriched from human neuroblastoma using the magnetic-activated cell sorting (MACS) technique. Cells were incubated with GNRs coated with BSA and exposed to 808-nm near-infrared laser irradiation for 8 min to yield low (43 °C), medium (46 °C), and high (49 °C) temperatures. After 24 h, the survival rate and the percent of apoptotic and necrotic CSCs were measured using MTT assay and flow cytometry. The expression of different autophagy-related genes was measured using polymerase chain reaction (PCR) array analysis. Protein levels of P62 and LC3 were detected using an enzyme-linked immunosorbent assay (ELISA). The viability of CSC was reduced in GNR-exposed cells compared to the control group (p 0.05). The clonogenic capacity of CSC was also inhibited after photothermal therapy (p < 0.05). Despite these changes, no statistically significant differences were found in terms of CSC colony number at different temperatures regardless of the presence or absence of HCQ. Based on the data, the combination of photothermal therapy with HCQ at 49 °C can significantly abort the CSC clonogenic capacity compared to the control-matched group without HCQ (p < 0.0001). PCR array showed photothermal modulation of CSCs led to alteration of autophagy-related genes and promotion of co-regulator of apoptosis and autophagy signaling pathways. Factors related to autophagic vacuole formation and intracellular transport were significantly induced at a temperature of 49 °C (p < 0.05). We also note the expression of common genes belonging to autophagy and apoptosis signaling pathways at higher temperatures. Data showed tumoricidal effects of laser-irradiated GNRs by the alteration of autophagic response and apoptosis.