BMC Neuroscience (Jun 2012)
Infrared optical imaging of matrix metalloproteinases (MMPs) up regulation following ischemia reperfusion is ameliorated by hypothermia
Abstract
Abstract Background We investigated the use of a new MMP activatable probe MMPSense™ 750 FAST (MMPSense750) for in-vivo visualization of early MMP activity in ischemic stroke. Following middle cerebral artery occlusion (MCAO) optical imaging was performed. Near-infrared (NIR) fluorescent images of MMPSense activation were acquired using an Olympus fluorescent microscope, 1.25x objective, a CCD camera and an appropriate filter cube for detecting the activated probe with peak excitation and emission at 749 and 775 nm, respectively. Images were acquired starting at 2 or 24 hours after reperfusion over the ipsilateral and contralateral cortex before and for 3 hours after, MMPSense750 was injected. Results Increased intensities ipsilaterally were observed following MMPSense750 injection with ischemic injury but not in sham animals. There were significant ipsilateral and contralateral differences at 15 minutes (P Conclusions Matrix-metalloproteinase upregulation in ischemia reperfusion can be imaged acutely in-vivo with NIRF using MMPSense750. Hypothermia attenuated both the optical increase in intensity after MMPSense750 and the increase in MMP-9 protein expression supporting the proof of concept that NIRF imaging using MMPSense can be used to assess potential therapeutic strategies for stroke treatment.