Materials (Aug 2024)

Molecular Dynamics Study on Wear Resistance of High Entropy Alloy Coatings Considering the Effect of Temperature

  • Xianhe Zhang,
  • Zhenrong Yang,
  • Yong Deng

DOI
https://doi.org/10.3390/ma17163911
Journal volume & issue
Vol. 17, no. 16
p. 3911

Abstract

Read online

High entropy alloys have excellent wear resistance, so they have great application prospects in the fields of wear resistance and surface protection. In this study, the wear resistance of the FeNiCrCoCu high entropy alloy coating was systematically analyzed by the molecular dynamics method. FeNiCrCoCu high entropy alloy was used as a coating material to adhere to the surface of a Cu matrix. The friction and nanoindentation simulation of this coating material were carried out by controlling the ambient temperature. The influence of temperature on its friction properties was analyzed on five aspects: lattice structure, dislocation evolution, friction coefficient, hardness, and elastic modulus. The results show that with the increase of temperature, the disorder of the lattice structure increases, which leads to an increase of the tangential force and friction coefficient in the friction process. At 300 K and 600 K, the ordered lattice structure of the high entropy alloy coating material is basically the same, and thus its hardness is basically the same. However, the dislocation density at 600 K is significantly reduced compared with that at 300 K, resulting in an increase of the elastic modulus of the material from 173 GPa to 219 GPa. At temperatures of 900 K and 1200 K, lattice disorder takes place rapidly, and dislocation density also decreases significantly, resulting in a significant decrease in the hardness and elastic modulus of the material. When the temperature reaches 900 K, the wear resistance of the FeNiCrCoCu high entropy alloy coating decreases sharply. This work is of great value in the analysis of wear resistance of high entropy alloys at high temperature.

Keywords