Dose-Dependent Outcome of EBV Infection of Humanized Mice Based on Green Raji Unit (GRU) Doses
Haiwen Chen,
Ling Zhong,
Wanlin Zhang,
Shanshan Zhang,
Junping Hong,
Xiang Zhou,
Xinyu Zhang,
Qisheng Feng,
Yixin Chen,
Yi-Xin Zeng,
Miao Xu,
Claude Krummenacher,
Xiao Zhang
Affiliations
Haiwen Chen
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Ling Zhong
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Wanlin Zhang
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Shanshan Zhang
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Junping Hong
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, China
Xiang Zhou
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Xinyu Zhang
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Qisheng Feng
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Yixin Chen
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, China
Yi-Xin Zeng
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Miao Xu
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Claude Krummenacher
Department of Biological Sciences, Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
Xiao Zhang
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
Humanized mouse models are used as comprehensive small-animal models of EBV infection. Previously, infectious doses of EBV used in vivo have been determined mainly on the basis of TD50 (50% transforming dose), which is a time-consuming process. Here, we determined infectious doses of Akata-EBV-GFP using green Raji units (GRUs), and characterized dose-dependent effects in humanized mice. We defined two outcomes in vivo, including an infection model and a lymphoma model, following inoculation with low or high doses of Akata-EBV-GFP, respectively. Inoculation with a low dose induced primary B cells to become lymphoblastoid cell lines in vitro, and caused latent infection in humanized mice. In contrast, a high dose of Akata-EBV-GFP resulted in primary B cells death in vitro, and fatal B cell lymphomas in vivo. Following infection with high doses, the frequency of CD19+ B cells decreased, whereas the percentage of CD8+ T cells increased in peripheral blood and the spleen. At such doses, a small part of activated CD8+ T cells was EBV-specific CD8+ T cells. Thus, GRUs quantitation of Akata-EBV-GFP is an effective way to quantify infectious doses to study pathologies, immune response, and to assess (in vivo) the neutralizing activity of antibodies raised by immunization against EBV.