Materials (Feb 2021)

The Evaluation of the Effectiveness of Reinforcement by Cemented-Carbide Plates in Two Design Variants of the Chisels Intended for Cultivation–Sowing Aggregates

  • Piotr Kostencki,
  • Tomasz Stawicki,
  • Aleksandra Królicka

DOI
https://doi.org/10.3390/ma14041020
Journal volume & issue
Vol. 14, no. 4
p. 1020

Abstract

Read online

Field tribological tests of two design variants of chisels used in the teeth of a cultivation-sowing unit were carried out in this research. A characteristic feature of the first variant of chisels was the reinforcement of their contact surface and almost the entire rake surface by plates made of cemented carbides. On the other hand, the second variant of chisels was reinforced only in the area of the blade by two plates made of cemented carbides, soldered on the rake face of the elements. The use of the first variant of chisels contributed to a significant reduction in the wear rate of elements, especially in terms of thickness and width loss. Effective reinforcement of the rake face, with relatively lower resistance to length reduction in the elements, raises doubts as to the validity of the use of cemented-carbide plates on almost the entire length of their rake face, because the applied variant of chisels contributed to a significantly higher price. However, the second variant of chisels effectively limited the intensity of the loss of the length of the elements, and the cause of the loss of their usefulness as part of the base material wear. It was found that the main wear mechanism of the cemented-carbide plates consisted of matrix removal under the influence of the finest fraction of the soil, which weakened the embedding of carbides, and then crushing or chipping of carbide grains from the matrix, whereas the dominant wear mechanisms of martensitic steel were grooving and micro-cutting.

Keywords