Physical Review Research (Sep 2024)
Hydrodynamic hovering of swimming bacteria above surfaces
Abstract
Flagellated bacteria are hydrodynamically attracted to rigid walls, yet past work shows a “hovering” state where they swim stably at a finite height above surfaces. We use numerics and theory to reveal the physical origin of hovering. Simulations first show that hovering requires an elongated cell body and results from a tilt away from the wall. Theoretical models then identify two essential asymmetries: the response of width-asymmetric cells to active flows created by length-asymmetric cells. A minimal model reconciles near- and far-field hydrodynamics, capturing all key features of hovering.