Remote Sensing (Feb 2022)

Interannual Variability of the Congo River Plume-Induced Sea Surface Salinity

  • Meike Sena Martins,
  • Detlef Stammer

DOI
https://doi.org/10.3390/rs14041013
Journal volume & issue
Vol. 14, no. 4
p. 1013

Abstract

Read online

Based on satellite surface salinity (SSS) observations from the SMOS, Aquarius and SMAP missions, we investigate the interannual SSS variability during the period from 2010 to 2020 in the Gulf of Guinea, impacted by the Congo River run-off. Combined with in situ data, the available 11 years of satellite salinity data suggest that the plume of Congo run-off primarily spreads into western directions, leading to reduced SSS. A fraction of it also shows a coastal southward extent subject to interannual variability influenced by coastal trapped waves. The low-salinity water is associated with high values of net primary production, confirming the riverine origin of the nutrient rich plume. No correlation can be found between the plume patterns and the different upwelling strengths in the subsequent upwelling months, nor could a correlation be found with the occurrence of the Benguela Niños. Linking the occurrence of a barrier layer to the occurrence of low-salinity plumes remains difficult, mainly because of the sparseness of in situ data. However, the influence of the low-salinity layer is evident in its stronger stratification and an increased available potential energy.

Keywords