PLoS ONE (Jan 2013)

Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration.

  • Alexandra Sémont,
  • Christelle Demarquay,
  • Raphaëlle Bessout,
  • Christelle Durand,
  • Marc Benderitter,
  • Noëlle Mathieu

DOI
https://doi.org/10.1371/journal.pone.0070170
Journal volume & issue
Vol. 8, no. 7
p. e70170

Abstract

Read online

Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions) after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site) pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9) progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation.