Advances in Difference Equations (Jul 2020)

Shrinking Cesáro means method for the split equilibrium and fixed point problems in Hilbert spaces

  • Samy A. Harisa,
  • M. A. A. Khan,
  • F. Mumtaz,
  • Nashat Faried,
  • Ahmed Morsy,
  • Kottakkaran Sooppy Nisar,
  • Abdul Ghaffar

DOI
https://doi.org/10.1186/s13662-020-02800-z
Journal volume & issue
Vol. 2020, no. 1
pp. 1 – 19

Abstract

Read online

Abstract We propose a modified version of the classical Cesáro means method endowed with the hybrid shrinking projection method to solve the split equilibrium and fixed point problems (SEFPP) in Hilbert spaces. One of the main reasons to equip the classical Cesáro means method with the shrinking projection method is to establish strong convergence results which are often required in infinite-dimensional functional spaces. As a consequence, the convergence analysis is carried out under mild conditions on the underlying shrinking Cesáro means method. We emphasize that the results accounted in this manuscript can be considered as an improvement and generalization of various existing exciting results in this field of study.

Keywords