Microbiology Spectrum (Aug 2022)

Transmission of Nonconjugative Virulence or Resistance Plasmids Mediated by a Self-Transferable IncN3 Plasmid from Carbapenem-Resistant Klebsiella pneumoniae

  • Xiaoli Wang,
  • Bin Tang,
  • Guitian Liu,
  • Meng Wang,
  • Jingyong Sun,
  • Ruoming Tan,
  • Tingting Pan,
  • Jieming Qu,
  • Jialin Liu,
  • Hong-Yu Ou,
  • Hongping Qu

DOI
https://doi.org/10.1128/spectrum.01364-22
Journal volume & issue
Vol. 10, no. 4

Abstract

Read online

ABSTRACT Klebsiella pneumoniae poses a critical challenge to clinical and public health. Along with conjugative plasmids, nonconjugative resistance or virulence plasmids associated with carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP), and even carbapenem-resistant and hypervirulent K. pneumoniae (CR-hvKP) strains have been spreading globally. In this study, a clinical CRKP strain KP2648 was isolated, and the transferability of its plasmids was assessed using conjugation experiments. The transconjugants were characterized by polymerase chain reaction (PCR) detection, XbaI and S1-pulsed-field gel electrophoresis (PFGE), and/or whole-genome sequencing. Genetically modified IncN3 plasmids were employed to elucidate the self-transferability and the mobilization mechanisms. KP2648 has three natural plasmids: a nonconjugative IncFIB/IncHI3B virulence plasmid, a nonconjugative IncFII/IncR carbapenem-resistant plasmid, and a self-transferable IncN3 plasmid with a high conjugation frequency (7.54 ± 1.06) × 10−1. The IncN3 plasmid could mobilize the coexisting nonconjugative virulence/resistance plasmids either directly or by employing intermediate E. coli with two forms: a hybrid plasmid fused with IncN3 or a cotransfer with the helper plasmid, IncN3. Various mobile genetic elements, including ISKpn74, ISKpn14, IS26, ISShes11, ISAba11, and Tn3, are involved in the genetic transposition of diverse hybrid plasmids and the cotransfer process during the intra/interspecies transmission. IMPORTANCE Nowadays, the underlying mobilization mechanism and evolutionary processes of nonconjugative virulence or resistance plasmids in Klebsiella pneumoniae remain poorly understood. Our study revealed the high conjugation ability of IncN3 plasmid isolated from carbapenem-resistant K. pneumoniae and confirmed its capability to mobilize the nonconjugative virulence or resistance plasmids. The self-transferable IncN3 plasmid could facilitate the transmission of pathogenicity and genetic evolution of carbapenem-resistant and hypervirulent K. pneumoniae, including hv-CRKP (virulence plasmid obtained by carbapenem-resistant K. pneumoniae) and CR-hvKP (resistance plasmid obtained by hypervirulent K. pneumoniae), warranting further monitoring.

Keywords