Applied Sciences (Sep 2019)

A Pilot Study of Wet Lung Using Lung Ultrasound Surface Wave Elastography in an Ex Vivo Swine Lung Model

  • Xiaoming Zhang,
  • Boran Zhou,
  • Alex X. Zhang

DOI
https://doi.org/10.3390/app9183923
Journal volume & issue
Vol. 9, no. 18
p. 3923

Abstract

Read online

Extravascular lung water (EVLW) is a basic symptom of congestive heart failure and other conditions. Computed tomography (CT) is standard method used to assess EVLW, but it requires ionizing radiation and radiology facilities. Lung ultrasound reverberation artifacts called B-lines have been used to assess EVLW. However, analysis of B-line artifacts depends on expert interpretation and is subjective. Lung ultrasound surface wave elastography (LUSWE) was developed to measure lung surface wave speed. This pilot study aimed at measureing lung surface wave speed due to lung water in an ex vivo swine lung model. The surface wave speeds of a fresh ex vivo swine lung were measured at 100 Hz, 200 Hz, 300 Hz, and 400 Hz. An amount of water was then filled into the lung through its trachea. Ultrasound imaging was used to guide the water filling until significant changes were visible on the imaging. The lung surface wave speeds were measured again. It was found that the lung surface wave speed increases with frequency and decreases with water volume. These findings are confirmed by experimental results on an additional ex vivo swine lung sample.

Keywords