Journal of High Energy Physics (Apr 2017)
Two-Higgs-doublet-portal dark-matter models in light of direct search and LHC data
Abstract
Abstract We explore simple Higgs-portal models of dark matter (DM) with spin 1/2, 3/2, and 1, respectively, applying to them constraints from the LUX and PandaX-II direct detection experiments and from LHC measurements on the 125-GeV Higgs boson. With only one Higgs doublet, we find that the spin-1/2 DM having a purely scalar effective coupling to the doublet is viable only in a narrow range of mass near the Higgs pole, whereas the vector DM is still allowed if its mass is also close to the Higgs pole or exceeds 1.4 TeV, both in line with earlier analyses. Moreover, the spin-3/2 DM is in a roughly similar situation to the spin-1/2 DM, but has surviving parameter space which is even more restricted. We also consider the two-Higgs-doublet extension of each of the preceding models, assuming that the expanded Yukawa sector is that of the two-Higgs-doublet model of type II. We show that in these two-Higgs-doublet-portal models significant portions of the DM mass regions excluded in the simplest scenarios by direct search bounds can be reclaimed due to suppression of the effective DM interactions with nucleons at some ratios of the CP -even Higgs bosons’ couplings to the up and down quarks. The regained parameter space contains areas which can yield a DM-nucleon scattering cross-section that is far less than its current experimental limit or even goes below the neutrino-background floor.
Keywords