An Accelerated Extragradient Method for Solving Pseudomonotone Equilibrium Problems with Applications
Nopparat Wairojjana,
Habib ur Rehman,
Ioannis K. Argyros,
Nuttapol Pakkaranang
Affiliations
Nopparat Wairojjana
Applied Mathematics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage (VRU), 1 Moo 20 Phaholyothin Road, Klong Neung, Klong Luang, Pathumthani 13180, Thailand
Habib ur Rehman
KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Ioannis K. Argyros
Department of Mathematical Sciences, Cameron University, Lawton, OK 73505, USA
Nuttapol Pakkaranang
KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
Several methods have been put forward to solve equilibrium problems, in which the two-step extragradient method is very useful and significant. In this article, we propose a new extragradient-like method to evaluate the numerical solution of the pseudomonotone equilibrium in real Hilbert space. This method uses a non-monotonically stepsize technique based on local bifunction values and Lipschitz-type constants. Furthermore, we establish the weak convergence theorem for the suggested method and provide the applications of our results. Finally, several experimental results are reported to see the performance of the proposed method.