3D Printing in Medicine (Nov 2020)

MRI guided procedure planning and 3D simulation for partial gland cryoablation of the prostate: a pilot study

  • Nicole Wake,
  • Andrew B. Rosenkrantz,
  • Daniel K. Sodickson,
  • Hersh Chandarana,
  • James S. Wysock

DOI
https://doi.org/10.1186/s41205-020-00085-2
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Purpose This study reports on the development of a novel 3D procedure planning technique to provide pre-ablation treatment planning for partial gland prostate cryoablation (cPGA). Methods Twenty men scheduled for partial gland cryoablation (cPGA) underwent pre-operative image segmentation and 3D modeling of the prostatic capsule, index lesion, urethra, rectum, and neurovascular bundles based upon multi-parametric MRI data. Pre-treatment 3D planning models were designed including virtual 3D cryotherapy probes to predict and plan cryotherapy probe configuration needed to achieve confluent treatment volume. Treatment efficacy was measured with 6 month post-operative MRI, serum prostate specific antigen (PSA) at 3 and 6 months, and treatment zone biopsy results at 6 months. Outcomes from 3D planning were compared to outcomes from a series of 20 patients undergoing cPGA using traditional 2D planning techniques. Results Forty men underwent cPGA. The median age of the cohort undergoing 3D treatment planning was 64.8 years with a median pretreatment PSA of 6.97 ng/mL. The Gleason grade group (GGG) of treated index lesions in this cohort included 1 (5%) GGG1, 11 (55%) GGG2, 7 (35%) GGG3, and 1 (5%) GGG4. Two (10%) of these treatments were post-radiation salvage therapies. The 2D treatment cohort included 20 men with a median age of 68.5 yrs., median pretreatment PSA of 6.76 ng/mL. The Gleason grade group (GGG) of treated index lesions in this cohort included 3 (15%) GGG1, 8 (40%) GGG2, 8 (40%) GGG3, 1 (5%) GGG4. Two (10%) of these treatments were post-radiation salvage therapies. 3D planning predicted the same number of cryoprobes for each group, however a greater number of cryoprobes was used in the procedure for the prospective 3D group as compared to that with 2D planning (4.10 ± 1.37 and 3.25 ± 0.44 respectively, p = 0.01). At 6 months post cPGA, the median PSA was 1.68 ng/mL and 2.38 ng/mL in the 3D and 2D cohorts respectively, with a larger decrease noted in the 3D cohort (75.9% reduction noted in 3D cohort and 64.8% reduction 2D cohort, p 0.48). In-field disease detection was 1/14 (7.1%) on surveillance biopsy in the 3D cohort and 3/14 (21.4%) in the 2D cohort, p = 0.056) In the 3D cohort, 6 month biopsy was not performed in 4 patients (20%) due to undetectable PSA, negative MRI, and negative MRI Axumin PET. For the group with traditional 2D planning, treatment zone biopsy was positive in 3/14 (21.4%) of the patients, p = 0.056. Conclusions 3D prostate cancer models derived from mpMRI data provide novel guidance for planning confluent treatment volumes for cPGA and predicted a greater number of treatment probes than traditional 2D planning methods. This study prompts further investigation into the use of 3D treatment planning techniques as the increase of partial gland ablation treatment protocols develop.

Keywords