Acoustics (Aug 2022)

BDREA Betta and Dolphin Pods Routing via Energy Scarcity Aware Protocol for Underwater Acoustic Wireless Sensor Networks (UAWSNs)

  • Hamza Zradgui,
  • Khalil Ibrahimi

DOI
https://doi.org/10.3390/acoustics4030040
Journal volume & issue
Vol. 4, no. 3
pp. 656 – 678

Abstract

Read online

There exist numerous applications for deploying Underwater Wireless Sensor Networks (UWSNs), including submarine detection, disaster prevention, oil and gas monitoring, off-shore exploration, and military target tracking. The acoustic sensor nodes are deployed to monitor the underwater environment, considering the area under observation. This research work proposes an energy scarcity-aware routing protocol for energy efficient UWSNs. Moreover, it aims to find the feasible region on the basis of the objective function, in order to minimize the energy tax and extend the network life. There are three different sensors nodes in the network environment, i.e., anchor nodes, relay nodes, and the centralized station. Anchor nodes originate data packets, while relay nodes process them and broadcast between each other until the packets reach the centralized station. The underline base scheme Weighting Depth and Forwarding Area Division Depth-Based Routing (WDFAD-DBR) for routing is based on the depth differences of the first- and second-hop nodes of the source node. The propose work, Betta and Dolphin Pods Routing via Energy Scarcity Aware protocol (BDREA) for packet forwarding from the forwarding nodes considers the first and second hops of the source node, i.e., the packet advancement, the network traffic, the distance to the centralized station, and the inverse normalized energy of the forwarding zone. It is observed that the proposed work improves the performance parameters by approximately 50% in terms of energy efficiency, and prolongs the network life compared to Dolphin and Whale Pod (DOW-PR) protocols. Furthermore, the energy efficiency directly relates to the other parameters, and its enhancement can be seen in terms of an 18.02% reduction in end-to-end delay when compared with the Weighting Depth and Forwarding Area Division Depth-Based Routing (WDFAD-DBR) protocol. Furthermore, BDREA improves the Packet Delivery Ratio (PDR) by approximately 8.71%, compared to DOW-PR, and by 10% compared with the benchmark, WDFAD-DBR, the energy tax by 50% in comparison to DOW-PR, the end-to-end delay by 18%, and the APD by 5% in comparison to WDFAD-DBR.

Keywords