RETRACTED ARTICLE: Circular RNA circStag1 promotes bone regeneration by interacting with HuR
Gaoyang Chen,
Canling Long,
Shang Wang,
Zhenmin Wang,
Xin Chen,
Wanze Tang,
Xiaoqin He,
Zhiteng Bao,
Baoyu Tan,
Jin Zhao,
Yongheng Xie,
Zhizhong Li,
Dazhi Yang,
Guozhi Xiao,
Songlin Peng
Affiliations
Gaoyang Chen
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Canling Long
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Shang Wang
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Zhenmin Wang
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Xin Chen
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Wanze Tang
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Xiaoqin He
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Zhiteng Bao
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Baoyu Tan
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Jin Zhao
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Yongheng Xie
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Zhizhong Li
The First Affiliated Hospital, Jinan University
Dazhi Yang
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Guozhi Xiao
School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment
Songlin Peng
Department of Spine Surgery and Institute for Orthopaedic Research, the Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration
Abstract Postmenopausal osteoporosis is a common bone metabolic disorder characterized by deterioration of the bone microarchitecture, leading to an increased risk of fractures. Recently, circular RNAs (circRNAs) have been demonstrated to play pivotal roles in regulating bone metabolism. However, the underlying functions of circRNAs in bone metabolism in postmenopausal osteoporosis remain obscure. Here, we report that circStag1 is a critical osteoporosis-related circRNA that shows significantly downregulated expression in osteoporotic bone marrow mesenchymal stem cells (BMSCs) and clinical bone tissue samples from patients with osteoporosis. Overexpression of circStag1 significantly promoted the osteogenic capability of BMSCs. Mechanistically, we found that circStag1 interacts with human antigen R (HuR), an RNA-binding protein, and promotes the translocation of HuR into the cytoplasm. A high cytoplasmic level of HuR led to the activation of the Wnt signaling pathway by stabilizing and enhancing low-density lipoprotein receptor-related protein 5/6 (Lrp5/6) and β-catenin expression, thereby stimulating the osteogenic differentiation of BMSCs. Furthermore, overexpression of circStag1 in vivo by circStag1-loaded adeno-associated virus (circStag1-AAV) promoted new bone formation, thereby preventing bone loss in ovariectomized rats. Collectively, we show that circStag1 plays a pivotal role in promoting the regeneration of bone tissue via HuR/Wnt signaling, which may provide new strategies to prevent bone metabolic disorders such as postmenopausal osteoporosis.