Journal of Traditional and Complementary Medicine (Jul 2020)
Vasculoprotective effects of Centella asiatica, Justicia gendarussa and Imperata cylindrica decoction via the NOXs-ROS-NF-κB pathway in spontaneously hypertensive rats
Abstract
Background and aim: Centella asiatica, Justicia gendarussa and Imperata cylindrica decoction (CJID) is efficacious for hypertension. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX)-induced reactive oxygen species (ROS) generation modulates nuclear factor kappa B (NF-κB) activation and thus mediates hypertension-induced vascular remodeling. This research aims to investigate the anti-remodeling effect of CJID through the mechanism of NOXs-ROS-NF-κB pathway in spontaneously hypertensive rats (SHRs). Experimental procedure: CJID was orally administered once a day for five weeks in SHRs and normotensive-WKY (Wistar Kyoto) rats. All rats were sacrificed at the end of study and different assays were performed to determine whether CJID ameliorates vascular remodeling in SHRs, such as histological examination; lactate dehydrogenase (LDH), nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) assays; superoxide and hydrogen peroxide (H2O2) generation assays, immunohistochemistry and immunofluorescence assays. . Changes in levels of inducible nitric oxide synthase (iNOS), NF-κB-p65, NF-κB inhibitor alpha/IκBα (inhibitory kappa B- alpha), phosphorylation of IκBα (p-IκBα) and NOX1, NOX2, NOX4 in the thoracic aorta were determined. Results: Vascular remodeling indicators, media thickness, collagen and elastic accumulation in the thoracic aorta, of SHRs-treated CJID were attenuated. Redox homeostasis, aortic superoxide and hydrogen peroxide generation were decreased in SHRs-treated group. Aortic iNOS, p-IκBα, NF-κB-p65 and NOX1, NOX2, NOX4 expressions were suppressed. Conclusions: CJI treatment diminishes oxidative stress response in the thoracic aorta of SHRs via regulation of NOXs-ROS-NF-κB signaling pathway. These findings indicate that CJI possess protective effect against hypertension-induced vascular remodeling in SHRs.