Chemosensors (Jun 2022)

YAP/TAZ Promote Fibrotic Activity in Human Trabecular Meshwork Cells by Sensing Cytoskeleton Structure Alternation

  • Shan Huang,
  • Zhicheng Liu,
  • Xiuqing Qian,
  • Lin Li,
  • Haixia Zhang,
  • Shanshan Li,
  • Zhicheng Liu

DOI
https://doi.org/10.3390/chemosensors10070235
Journal volume & issue
Vol. 10, no. 7
p. 235

Abstract

Read online

Trabecular meshwork (TM) is the main channel of aqueous humor (AH) outflow and the crucial tissue responsible for intraocular pressure (IOP) regulation. The aberrant fibrotic activity of human TM (HTM) cells is thought to be partially responsible for the increased resistance to AH outflow and elevated IOP. This study aimed to identify the TM cell fibrotic activity biomarker and illustrate the mechanisms of fibrotic activity regulation in HTM cells. We used TGFβ2-treated HTM cells and detected the changes in the cytoskeletal structure, the Yes-associated protein (YAP) and its transcriptional co-activator with PDZ-binding domain (TAZ) activation, and the expression levels of the fibrosis-related proteins Collagen I and α-SMA in HTM cells by immunofluorescence staining or western bolt analyses. The expression of YAP was inhibited using siRNA transfection. The results showed that the expression levels of YAP/TAZ and the fibrosis-related proteins Collagen I and α-SMA in HTM cells were elevated under TGF-β2 treatment, which was correlated with the structural change of the cellular F-actin cytoskeleton. Furthermore, the inhibition of YAP decreased the expression of connective tissue growth factor (CTGF), Collagen I, and α-SMA in HTM cells. These findings demonstrate that YAP/TAZ are potential biomarkers in evaluating the TM cell fibrotic activity, and it could sense cytoskeletal structure cues and regulate the fibrotic activity of TM cells.

Keywords