Advanced Science (Nov 2022)

Programming Multistable Metamaterials to Discover Latent Functionalities

  • Hossein Mofatteh,
  • Benyamin Shahryari,
  • Armin Mirabolghasemi,
  • Alireza Seyedkanani,
  • Razieh Shirzadkhani,
  • Gilles Desharnais,
  • Abdolhamid Akbarzadeh

DOI
https://doi.org/10.1002/advs.202202883
Journal volume & issue
Vol. 9, no. 33
pp. n/a – n/a

Abstract

Read online

Abstract Using multistable mechanical metamaterials to develop deployable structures, electrical devices, and mechanical memories raises two unanswered questions. First, can mechanical instability be programmed to design sensors and memory devices? Second, how can mechanical properties be tuned at the post‐fabrication stage via external stimuli? Answering these questions requires a thorough understanding of the snapping sequences and variations of the elastic energy in multistable metamaterials. The mechanics of deformation sequences and continuous force/energy–displacement curves are comprehensively unveiled here. A 1D array, that is chain, of bistable cells is studied to explore instability‐induced energy release and snapping sequences under one external mechanical stimulus. This method offers an insight into the programmability of multistable chains, which is exploited to fabricate a mechanical sensor/memory with sampling (analog to digital‐A/D) and data reconstruction (digital to analog‐D/A) functionalities operating based on the correlation between the deformation sequence and the mechanical input. The findings offer a new paradigm for developing programmable high‐capacity read–write mechanical memories regardless of thei size scale. Furthermore, exotic mechanical properties can be tuned by harnessing the attained programmability of multistable chains. In this respect, a transversely multistable mechanical metamaterial with tensegrity‐like bistable cells is designed to showcase the tunability of chirality.

Keywords