IEEE Access (Jan 2024)

Analytical Modeling of Depletion-Mode MOSHEMT Device for High- Temperature Applications

  • Naeemul Islam,
  • Mohamed Fauzi Packeer Mohamed,
  • Norhawati Ahmad,
  • Muammar Mohamad Isa,
  • Alhan Farhanah Abd Rahim,
  • Khaled Ahmeda

DOI
https://doi.org/10.1109/ACCESS.2024.3373790
Journal volume & issue
Vol. 12
pp. 36447 – 36456

Abstract

Read online

An analytical model for depletion-mode MOSHEMTs for high-temperature applications is compared against the experimental GaN HEMT data of the AlGaN/GaN MOSHEMT for temperature dependence of 2DEG simulated at 75 °C and 125 °C. Both temperatures reduce the 2DEG density by 4 % in the GaN HEMT and 3 % in the AlGaN/GaN MOSHEMT. The cause of this diminishing effect is determined to be the decrease of the conduction band offset at high temperatures. Additionally, the device performance degrades at high temperatures due to the immature behaviour of GaN material when it operates at high-power dissipation with poor thermal conductivity. The simulated AlGaN/GaN MOSHEMT performance is comparatively improved compared to the experimental AlGaN/GaN HEMT devices. This improvement could be used to understand the nature of the 2DEG density vs the temperature, hence could enhance the experimental performance of the AlGaN/GaN MOSHEMT.

Keywords