مجله آب و خاک (Jun 2023)

Determining the Optimal Cropping Pattern Based on the Multiple Objectives of Water, Energy, Food and Economic Profit Indices (Case Study: Markazi Province - Farahan Plain)

  • M. Goodarzi,
  • J. Ghadbeiklou,
  • A. Ghadiry,
  • M.A. Khodshenas

DOI
https://doi.org/10.22067/jsw.2023.79946.1233
Journal volume & issue
Vol. 37, no. 2
pp. 187 – 202

Abstract

Read online

Introduction Water is one of the most important factors of development in human societies, water scarcity, specially fresh water which is one of the main limitation for agricultural, economic and social development in most developing countries. Providing and implementing an optimal cropping pattern, in addition to better management of water and soil resources, can lead to reducing production risk, increasing the ability to deal with crises, improving employment, better management of providing services to farmers, and providing the possibility of expanding agro-based industries. In many regions of the world, including in Iran, many studies have been done to improve the cropping pattern in different regions. Despite the existing problems in designing and implementing the appropriate cropping pattern in the plains, modifying the cropping pattern based on scientific principles and emphasizing the reduction of water consumption while reducing water consumption provides the possibility of sustainable agriculture and in terms of economic and social aspects. Implementing an optimized cropping pattern in the Farahan Plain is an undeniable necessity to preserve national resources. This study was conducted with the objective of optimizing the cropping pattern in the area, taking into account multiple criteria. Methodology In this research, considering the importance of determining the cropping pattern based on the multiple objectives of the decision makers, it was tried to determine the optimal cropping pattern by using mathematical programming and fuzzy logic by establishing a compromise between the objectives of the cropping pattern. The model considered for this study was in the framework of the goal of the maximum ideal distance (Fuzzy Composite Distance). Also, in order to use water resources sustainably, scenarios of cropping patterns are presented based on different conditions of water resources uses. Based on the basin's water resource stability, an optimal cropping pattern was developed to address the conditions of normal water resource exploitation, as well as sustainable and unsustainable scenarios. Each scenario corresponds to a specific period. To achieve this, a multi-objective planning approach was utilized, integrating water, food, energy, and economic profit indicators. The resulting optimal cropping pattern considers stable water resource utilization during normal, drought, and wet periods, ensuring sustainable conditions. Results and Discussion The results showed that the amount of water consumed by the optimal cropping pattern compared to the existing cropping pattern under normal, drought and wet conditions is reduced by 23.2, 29.2 and 18.1%, respectively. On the other hand, compared to the existing cropping pattern, the amount of calories produced by the optimal cropping pattern under normal, drought and wet conditions increases by 51.7, 61.9 and 45.2%, the average energy efficiency increases by 40.9, 42.8 and 35.8% and the net profit productivity increases by 43.3, 30.9 and 44.2 %, respectively. Based on the obtained results, it can be seen that in the optimal cropping pattern in drought conditions, the cultivated area of crops such as potatoes, onions, tomatoes, grain corn, sugar beets, beans, alfalfa and watermelons should reach to the zero or be at the lowest possible level. In normal and drought conditions, the cultivated area of these crops should be minimal. On the other hand, the area under cultivation of crops such as fodder sorghum, fodder corn, saffron, cumin, camellia and medicinal plants should be increased and the cultivation of these crops should be promoted at the region. Also, regarding horticultural products, the cultivated area of walnut, apple, peach, apricot and almond orchards should be minimized and replaced with plants such as grapes, oleaster, jujube, barberry, rose, and figs. Conclusion Based on the obtained results, it was found that the use of the optimal cropping pattern derived from the indicators of water, food, energy and economic profit is completely superior and preferred over the existing cropping pattern and single purpose optimal cropping pattern. In order to achieve sustainable water resource management, it is recommended to modify the cropping pattern during drought, normal, and wet periods based on the suggested optimal cropping pattern. The existing cropping pattern currently falls short in terms of achieving the four objectives of water, food, energy, and economic profit. Therefore, it is crucial to develop main plans and strategies in the Farahan Plain that align with the implementation of the proposed optimal cropping pattern. By doing so, it will be possible to optimize the allocation of water resources and achieve improved outcomes in terms of water availability, food production, energy efficiency, and economic profitability.

Keywords