Jin'gangshi yu moliao moju gongcheng (Aug 2023)
Progress of ultrasonic vibration-assisted machining surface micro-texture and serviceability
Abstract
Ultrasonic machining, as an effective method to regulate the input external energy, is widely used in surface generation and modification. It can fabricate the microstructure through the precise regulation of interface energy. In order to promote the application of ultrasonic machining for fabricating surface micro-texture and enhancing the part's serviceability, firstly, the current processing methods for surface micro-texture are compared, and the focus is on the comprehensive review of ultrasonic vibration-assisted machining. The characteristics of ultrasonic vibration-assisted turning, milling, grinding, and ultrasonic reinforcement surface micro-texture are analyzed in terms of different vibration forms and ultrasonic dimensions, and the limitations of each process application and the key problems that need to be solved are summarized. Secondly, based on the surface micro-texture fabricated by each process, the serviceability such as friction, wetting, and structural color regulation is analyzed. The analysis mainly elaborates on the friction and wear, friction coefficient, bearing capacity, contact performance, and optical property regulation of surface micro-texture. The results show that surface micro-texture can improve the part’s wear resistance, hydrophobic characteristics, and optical functional characteristics to a certain extent. Finally, considering the issues to be further investigated, the surface micro-texture and serviceability in ultrasonic vibration-assisted machining are discussed for future prospects.
Keywords