Geomatics, Natural Hazards & Risk (Dec 2017)

Real-time prediction of water level change using adaptive neuro-fuzzy inference system

  • Mosbeh R Kaloop,
  • Mohammed El-Diasty,
  • Jong Wan Hu

DOI
https://doi.org/10.1080/19475705.2017.1327464
Journal volume & issue
Vol. 8, no. 2
pp. 1320 – 1332

Abstract

Read online

Accurate water levels modelling and prediction is essential for maritime applications. Water prediction is traditionally developed using the least-squares-based harmonic analysis method based on water level change (WLC) measurements. If long water level measurements are not obtained from the tide gauge, accurate water levels prediction cannot be estimated. To overcome the above limitations, the wavelet neural network (WNN) has recently been developed for the WLC prediction from short water level measurements. However, a new adaptive neuro-fuzzy inference system (ANFIS) model is proposed and developed in this paper. The ANFIS model is utilized to predict and select the WLC models of one month of hourly WLC for Yarmouth, Sain-John and Charlottetown stations in Canadian waters and compared with the current-state-of-the-art WNN model. The statistical analysis is applied to analyse the performance of the developed model in training and testing stages. The results showed an accurate modelling level using ANFIS technique for each station in training and testing stage. A comparison between the developed ANFIS method and the current-state-of-the-art WNN method shows that the accuracy of the developed ANFIS model is superior to the current-state-of-the-art model by 21.5% in average.

Keywords