Vaccines (Dec 2022)

Antibodies Induced by Homologous or Heterologous Inactivated (CoronaVac/BBIBP-CorV) and Recombinant Protein Subunit Vaccines (ZF2001) Dramatically Enhanced Inhibitory Abilities against B.1.351, B.1.617.2, and B.1.1.529 Variants

  • Xuesong Xu,
  • Yi Hong,
  • Erjing Chen,
  • Yaping Wang,
  • Biao Ma,
  • Jiali Li,
  • Wei Su,
  • Yuxin Zhou,
  • Mingzhou Zhang

DOI
https://doi.org/10.3390/vaccines10122110
Journal volume & issue
Vol. 10, no. 12
p. 2110

Abstract

Read online

Safe and effective vaccines for Corona Virus Disease 2019 (COVID-19) can prevent the virus from infecting human populations and treat patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we discuss the inhibitory abilities of primary and booster vaccine-induced antibodies inhibitory ability toward the SARS-CoV-2 wild-type strain, as well as B.1.1.7, B.1.351, P.1, B.1.617.2, and B.1.1.529. We confirmed these antibodies had the strongest inhibitory effects on the wild-type strain and cross-inhibition activities against other mutant strains after two inactivated vaccine doses. However, the B.1.351, B.1.617.2 and B.1.1.529 mutants exhibit antibody resistance in the vaccine serum. Antibodies induced by homologous inactivated vaccines (n = 92) presented more effective inhibition against tested SARS-CoV-2 strains (p < 0.0001), especially B.1.351, B.1.617.2, and B.1.1.529 mutant strains, which had strong immune escape characteristics. In addition, a heterologous booster vaccination (n = 50) of a protein subunit vaccine ZifiVax (ZF2001) significantly restored humoral immune responses and even showed an increasing response against wild-type, B.1.351, B.1.617.2, and B.1.1.529 than homologous inactivated vaccines. Our analysis of the humoral immune response elicited by the different vaccine regimens, including inhibiting antibodies, indicated that a booster, whether homologous or heterologous, could be essential for achieving greater efficacy against SARS-CoV-2.

Keywords