npj Breast Cancer (May 2023)

Computational pathology improves risk stratification of a multi-gene assay for early stage ER+ breast cancer

  • Yuli Chen,
  • Haojia Li,
  • Andrew Janowczyk,
  • Paula Toro,
  • Germán Corredor,
  • Jon Whitney,
  • Cheng Lu,
  • Can F. Koyuncu,
  • Mojgan Mokhtari,
  • Christina Buzzy,
  • Shridar Ganesan,
  • Michael D. Feldman,
  • Pingfu Fu,
  • Haley Corbin,
  • Aparna Harbhajanka,
  • Hannah Gilmore,
  • Lori J. Goldstein,
  • Nancy E. Davidson,
  • Sangeeta Desai,
  • Vani Parmar,
  • Anant Madabhushi

DOI
https://doi.org/10.1038/s41523-023-00545-y
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN− IBC. H&E images from a total of n = 321 patients with ER+ and LN− IBC from three cohorts were employed for this study (Training set: D1 (n = 116), Validation sets: D2 (n = 121) and D3 (n = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02–5.32, p = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18–7.35, p = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20–89.18, p = 0.0106; D1: p = 0.0238; D2: p = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.