Frontiers in Psychology (Dec 2018)

A Comparative Study on the Performance of GSCA and CSA in Parameter Recovery for Structural Equation Models With Ordinal Observed Variables

  • Kwanghee Jung,
  • Pavel Panko,
  • Jaehoon Lee,
  • Heungsun Hwang

DOI
https://doi.org/10.3389/fpsyg.2018.02461
Journal volume & issue
Vol. 9

Abstract

Read online

A simulation based comparative study was designed to compare two alternative approaches to structural equation modeling—generalized structured component analysis (GSCA) with the alternating least squares (ALS) estimator vs. covariance structure analysis (CSA) with the maximum likelihood (ML) estimator or the weighted least squares mean and variance adjusted (WLSMV) estimator—in terms of parameter recovery with ordinal observed variables. The simulated conditions included the number of response categories in observed variables, distribution of ordinal observed variables, sample size, and model misspecification. The simulation outcomes focused on average root mean square error (RMSE) and average relative bias (RB) in parameter estimates. The results indicated that, by and large, GSCA-ALS recovered structural path coefficients more accurately than CSA-ML and CSA-WLSMV in either a correctly or incorrectly specified model, regardless of the number of response categories, observed variable distribution, and sample size. In terms of loadings, CSA-WLSMV outperformed GSCA-ALS and CSA-ML in almost all conditions. Implications and limitations of the current findings are discussed, as well as suggestions for future research.

Keywords