Journal of Mathematical Cryptology (Aug 2020)

Short Principal Ideal Problem in multicubic fields

  • Lesavourey Andrea,
  • Plantard Thomas,
  • Susilo Willy

DOI
https://doi.org/10.1515/jmc-2019-0028
Journal volume & issue
Vol. 14, no. 1
pp. 359 – 392

Abstract

Read online

One family of candidates to build a post-quantum cryptosystem upon relies on euclidean lattices. In order to make such cryptosystems more efficient, one can consider special lattices with an additional algebraic structure such as ideal lattices. Ideal lattices can be seen as ideals in a number field. However recent progress in both quantum and classical computing showed that such cryptosystems can be cryptanalysed efficiently over some number fields. It is therefore important to study the security of such cryptosystems for other number fields in order to have a better understanding of the complexity of the underlying mathematical problems. We study in this paper the case of multicubic fields.

Keywords