Overlapping Root Architecture and Gene Expression of Nitrogen Transporters for Nitrogen Acquisition of Tomato Plants Colonized with Isolates of <i>Funneliformis mosseae</i> in Hydroponic Production
Jingyu Feng,
Weixing Lv,
Jing Xu,
Zhe Huang,
Wenjing Rui,
Xihong Lei,
Xuehai Ju,
Zhifang Li
Affiliations
Jingyu Feng
Beijing key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
Weixing Lv
Beijing key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
Beijing key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
Wenjing Rui
Beijing key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
Zhifang Li
Beijing key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University (CAU), Haidian District, Yuanmingyuanxilu 2, Beijing 100193, China
Understanding the impact of arbuscular mycorrhizal fungi (AMF) upon the nitrogen (N) uptake of tomato (Lycopersicum esculentum L.) plants is crucial for effectively utilizing these beneficial microorganisms in industrial hydroponic tomato production. Yet it remains unknown whether, besides fungal delivery, the AMF also affects N uptake via altered plant root growth or whether, together with changed N transporters expression of hosts, this impact is isolate-specific. We investigated tomato root architecture and the expression of LeAMT1.1, LeAMT1.2, and LeNRT2.3 genes in roots inoculated with five isolates of Funneliformis mosseae, these collected from different geographical locations, under greenhouse conditions with nutritional solution in coconut coir production. Our results revealed that isolate-specific AMF inoculation strongly increased the root biomass, total root length, surface area, and volume. Linear relationships were found between the total root length and N accumulation in plants. Furthermore, expression levels of LeAMT1.1, LeAMT1.2, and LeNRT2.3 were significantly up-regulated by inoculation with F. mosseae with isolate-specific. These results implied N uptake greater than predicted by root growth, and N transporters up-regulated by AMF symbiosis in an isolate-specific manner. Thus, an overlap in root biomass, architecture and expression of N transporters increase N acquisition in tomato plants in the symbiosis.