International Journal of Mining Science and Technology (Mar 2019)
Preparation and modulation of a novel thin-walled carbon foam
Abstract
By foaming and carbonization processes under atmospheric pressure, a novel thin-walled carbon foam with developed foam structure was successfully prepared from loose medium component (LMC) separated from raw coal by extraction and back-extraction method. The influences of foaming time, carbonization time, and micromolecule content on foam structure were investigated by scanning electron microscope and mercury injection data. Moreover, foaming mechanism of LMC was analyzed and expounded. The results showed that spherical pores and uniform ultrathin pore walls constitute three-dimensional foam structure of carbon foam and foam structure is developed with well connectivity. The effects of foaming time, carbonization time, and micromolecule content on foam structure are significant. Especially, average pore diameters of carbon foams prepared from the extracts of LMC are much smaller. With the rise of extraction rate, average pore diameter decreases and pore size distribution is more concentrated on the aperture section of 0–10 μm. Keywords: Carbon foam, Loose medium component, Ultrathin pore walls, Preparation, Modulation