Nature Communications (Oct 2024)
Body orientation change of neighbors leads to scale-free correlation in collective motion
Abstract
Abstract Collective motion, such as milling, flocking, and collective turning, is a common and captivating phenomenon in nature, which arises in a group of many self-propelled individuals using local interaction mechanisms. Recently, vision-based mechanisms, which establish the relationship between visual inputs and motion decisions, have been applied to model and better understand the emergence of collective motion. However, previous studies often characterize the visual input as a transient Boolean-like sensory stream, which makes it challenging to capture the salient movements of neighbors. This further hinders the onset of the collective response in vision-based mechanisms and increases demands on visual sensing devices in robotic swarms. An explicit and context-related visual cue serving as the sensory input for decision-making in vision-based mechanisms is still lacking. Here, we hypothesize that body orientation change (BOC) is a significant visual cue characterizing the motion salience of neighbors, facilitating the emergence of the collective response. To test our hypothesis, we reveal the significant role of BOC during collective U-turn behaviors in fish schools by reconstructing scenes from the view of individual fish. We find that an individual with the larger BOC often takes on the leading role during U-turns. To further explore this empirical finding, we build a pairwise interaction mechanism on the basis of the BOC. Then, we conduct experiments of collective spin and collective turn with a real-time physics simulator to investigate the dynamics of information transfer in BOC-based interaction and further validate its effectiveness on 50 real miniature swarm robots. The experimental results show that BOC-based interaction not only facilitates the directional information transfer within the group but also leads to scale-free correlation within the swarm. Our study highlights the practicability of interaction governed by the neighbor’s body orientation change in swarm robotics and the effect of scale-free correlation in enhancing collective response.