Journal of High Energy Physics (Aug 2023)
Threshold resummation for computing large-x parton distribution through large-momentum effective theory
Abstract
Abstract Parton distribution functions (PDFs) at large x are poorly constrained by high-energy experimental data, but extremely important for probing physics beyond standard model at colliders. We study the calculation of PDFs at large-x through large-momentum P z expansion of the lattice quasi PDFs. Similar to deep-inelastic scattering, there are two distinct perturbative scales in the threshold limit where the matching coefficient can be factorized into a space-like jet function at scale P z |1 − y| and a pair of heavy-light Sudakov form factors at scale P z . The matching formula allows us to derive a full renormalization group resummation of large threshold logarithms, and the result is consistent with the known calculation to the next-to-next to leading order (NNLO). This paves the way for direct large-x PDFs calculations in lattice QCD. As by-products, we find that the space-like jet function is related to a time-like version calculated previously through analytic continuation, and the heavy-light Sudakov form factor, calculated here to NNLO, is a universal object appearing as well in the large momentum expansion of quasi transverse-momentum-dependent PDFs and quasi wave-function amplitudes.
Keywords