Applied Sciences (Oct 2022)

Predictive Modeling of Employee Churn Analysis for IoT-Enabled Software Industry

  • Komal Naz,
  • Isma Farah Siddiqui,
  • Jahwan Koo,
  • Mohammad Ali Khan,
  • Nawab Muhammad Faseeh Qureshi

DOI
https://doi.org/10.3390/app122010495
Journal volume & issue
Vol. 12, no. 20
p. 10495

Abstract

Read online

Employee churn analytics is the process of assessing employee turnover rate and predicting churners in a corporate company. Due to the rapid requirement of experts in the industries, an employee may switch workplaces, and the company then has to look for a substitute with the training to deal with the tasks. This has become a bottleneck and the corporate sector suffers with additional cost overheads to restore the work routine in the organization. In order to solve this issue in a timely manner, we identify several ML techniques that examine an employee’s record and assess factors in generalized ways to assess whether the resource will remain to continue working or may leave the workplace with the passage of time. However, sensor-based information processing is not much explored in the corporate sector. This paper presents an IoT-enabled predictive strategy to evaluate employee churn count and discusses the factors to decrease this issue in the organizations. For this, we use filter-based methods to analyze features and perform classification to identify firm future churners. The performance evaluation shows that the proposed technique efficiently identifies the future churners with 98% accuracy in the IoT-enabled corporate sector organizations.

Keywords