BMC Infectious Diseases (Nov 2009)
<it>Moraxella catarrhalis </it>acquisition, airway inflammation and protease-antiprotease balance in chronic obstructive pulmonary disease
Abstract
Abstract Background Moraxella catarrhalis causes approximately 10% of exacerbations in chronic obstructive pulmonary disease (COPD) and also colonizes the lower airway in stable patients. Little is known about the effects of colonization by M. catarrhalis on airway inflammation and protease-antiprotease balance, and how these changes compare to those seen during exacerbations. Since COPD is a progressive inflammatory disease, elucidating the effects of bacterial colonization and exacerbation on airway inflammation is relevant to understanding disease progression in COPD. Our aims were (1) Analyze changes in airway inflammation in colonization and exacerbation of COPD due to M. catarrhalis; (2) Explore protease-antiprotease balance in colonization and exacerbation due to M. catarrhalis. Our hypothesis were (1) Acquisition of a new strain of M. catarrhalis in COPD increases airway inflammation from baseline and alters the protease-antiprotease balance towards a more proteolytic environment; (2) These changes are greater during exacerbations associated with M. catarrhalis as compared to colonization. Methods Thirty-nine consecutive COPD patients with 76 acquisitions of a new strain of M. catarrhalis over a 6-year period were identified in a prospective study. Seventy-six pre-acquisition sputum supernatant samples, obtained just before acquisition of M catarrhalis, and 76 acquisition samples (34 were associated with exacerbation, 42 with colonization) were analyzed for IL-8, TNF-α, Neutrophil Elastase (NE) and Secretory leukocyte protease inhibitor (SLPI). Changes were compared in paired samples from each patient. Results IL-8, TNF-α and NE were significantly elevated after acquisition of M. catarrhalis, compared to pre-acquisition samples (p =2 = 0.07; p = 0.001). Conclusion Acquisition of M. catarrhalis in COPD causes increased airway inflammation and worsening protease-antiprotease imbalance during exacerbations and also in colonization, even in the absence of increased symptoms. These effects could contribute to progression of airway disease in COPD.