Applied Sciences (Sep 2021)

Framework for Privacy-Preserving Wearable Health Data Analysis: Proof-of-Concept Study for Atrial Fibrillation Detection

  • Anamaria Vizitiu,
  • Cosmin-Ioan Nita,
  • Radu Miron Toev,
  • Tudor Suditu,
  • Constantin Suciu,
  • Lucian Mihai Itu

DOI
https://doi.org/10.3390/app11199049
Journal volume & issue
Vol. 11, no. 19
p. 9049

Abstract

Read online

Medical wearable devices monitor health data and, coupled with data analytics, cloud computing, and artificial intelligence (AI), enable early detection of disease. Privacy issues arise when personal health information is sent or processed outside the device. We propose a framework that ensures the privacy and integrity of personal medical data while performing AI-based homomorphically encrypted data analytics in the cloud. The main contributions are: (i) a privacy-preserving cloud-based machine learning framework for wearable devices, (ii) CipherML—a library for fast implementation and deployment of deep learning-based solutions on homomorphically encrypted data, and (iii) a proof-of-concept study for atrial fibrillation (AF) detection from electrocardiograms recorded on a wearable device. In the context of AF detection, two approaches are considered: a multi-layer perceptron (MLP) which receives as input the ECG features computed and encrypted on the wearable device, and an end-to-end deep convolutional neural network (1D-CNN), which receives as input the encrypted raw ECG data. The CNN model achieves a lower mean F1-score than the hand-crafted feature-based model. This illustrates the benefit of hand-crafted features over deep convolutional neural networks, especially in a setting with a small training data. Compared to state-of-the-art results, the two privacy-preserving approaches lead, with reasonable computational overhead, to slightly lower, but still similar results: the small performance drop is caused by limitations related to the use of homomorphically encrypted data instead of plaintext data. The findings highlight the potential of the proposed framework to enhance the functionality of wearables through privacy-preserving AI, by providing, within a reasonable amount of time, results equivalent to those achieved without privacy enhancing mechanisms. While the chosen homomorphic encryption scheme prioritizes performance and utility, certain security shortcomings remain open for future development.

Keywords