Beilstein Journal of Organic Chemistry (Aug 2020)

pH- and concentration-dependent supramolecular self-assembly of a naturally occurring octapeptide

  • Goutam Ghosh,
  • Gustavo Fernández

DOI
https://doi.org/10.3762/bjoc.16.168
Journal volume & issue
Vol. 16, no. 1
pp. 2017 – 2025

Abstract

Read online

Peptide-based biopolymers represent highly promising biocompatible materials with multiple applications, such as tailored drug delivery, tissue engineering and regeneration, and as stimuli-responsive materials. Herein, we report the pH- and concentration-dependent self-assembly and conformational transformation of the newly synthesized octapeptide PEP-1. At pH 7.4, PEP-1 forms β-sheet-rich secondary structures into fractal-like morphologies, as verified by circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, thioflavin T (ThT) fluorescence spectroscopy assay, and atomic force microscopy (AFM). Upon changing the pH value (using pH 5.5 and 13.0), PEP-1 forms different types of secondary structures and resulting morphologies due to electrostatic repulsion between charged amino acids. PEP-1 can also form helical or random-coil secondary structures at a relatively low concentration. The obtained pH-sensitive self-assembly behavior of the target octapeptide is expected to contribute to the development of novel drug nanocarrier assemblies.

Keywords